Considerable Piezochromism in All‐Inorganic Zero‐Dimensional Perovskite Nanocrystals via Pressure‐Modulated Self‐Trapped Exciton Emission

Author:

Ma Zhiwei1,Yang Songrui1,Shi Yue1,Fu Yuan1,Wang Kai2,Xiao Guanjun1ORCID,Zou Bo1

Affiliation:

1. State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China

2. Shandong Key Laboratory of Optical Communication Science and Technology School of Physics Science and Information Technology Liaocheng University Liaocheng 252000 China

Abstract

AbstractPiezochromic materials refer to a class of matters that alter their photoluminescence (PL) colors in response to the external stimuli, which exhibit promising smart applications in anti‐counterfeiting, optoelectronic memory and pressure‐sensing. However, so far, most reported piezochromic materials have been confined to organic materials or hybrid materials containing organic moieties with limited piezochromic range of less than 100 nm in visible region. Here, we achieved an intriguing piezochromism in all‐inorganic zero‐dimensional (0D) Cs3Cu2Cl5 nanocrystals (NCs) with a considerable piezochromic range of 232 nm because of their unique inorganic rigid structure. The PL energy shifted from the lowest‐energy red fluorescence (1.85 eV) to the highest‐energy blue fluorescence (2.83 eV), covering almost the entire visible wavelength range. Pressure‐modulated self‐trapped exciton emission between different energy levels of self‐trapped states within Cs3Cu2Cl5 NCs was the main reason for this piezochromism property. Note that the quenched emission, which is over five times more intense than that in the initial state, is retained under ambient conditions upon decompression. This work provides a promising pressure indicating material, particularly used in pressure stability monitoring for equipment working at extreme environments.

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3