Photocatalytic Free Radical‐Controlled Synthesis of High‐Performance Single‐Atom Catalysts

Author:

Chen Xiang1,Guan Shuhui1,Zhou Jianjiang1,Shang Hengjun1,Zhang Jingyuan1,Lv Fujian2,Yu Han1,Li Hexing13,Bian Zhenfeng1ORCID

Affiliation:

1. MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China

2. College of Chemistry and Environmental Science Qujing Normal University Qujing 655400 China

3. Shanghai University of Electric Power 2588 Changyang Rd. Shanghai 200090 China

Abstract

AbstractSingle‐atom catalysts (SACs) have emerged as crucial players in catalysis research, prompting extensive investigation and application. The precise control of metal atom nucleation and growth has garnered significant attention. In this study, we present a straightforward approach for preparing SACs utilizing a photocatalytic radical control strategy. Notably, we demonstrate for the first time that radicals generated during the photochemical process effectively hinder the aggregation of individual atoms. By leveraging the cooperative anchoring of nitrogen atoms and crystal lattice oxygen on the support, we successfully stabilize the single atom. Our Pd1/TiO2 catalysts exhibit remarkable catalytic activity and stability in the Suzuki–Miyaura cross‐coupling reaction, which was 43 times higher than Pd/C. Furthermore, we successfully depose Pd atoms onto various substrates, including TiO2, CeO2, and WO3. The photocatalytic radical control strategy can be extended to other single‐atom catalysts, such as Ir, Pt, Rh, and Ru, underscoring its broad applicability.

Funder

Key Technologies Research and Development Program

Natural Science Foundation of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3