Temperature‐Controlled Selective Formation of Silver Nanoclusters and Their Transformation to the Same Product

Author:

Wang Zhi1,Wang Yuchen2,Xu Tian‐Yang1,Li Li1,Aikens Christine M.2,Gao Zhi‐Yong3,Azam Mohammad4,Tung Chen‐Ho1,Sun Di1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University 250100 Ji'nan People's Republic of China

2. Department of Chemistry Kansas State University 66506 Manhattan Kansas USA

3. School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang People's Republic of China

4. Department of Chemistry College of Science King Saud University PO BOX 2455 11451 Riyadh Saudi Arabia

Abstract

AbstractHerein, two atomically precise silver nanoclusters, Ag54 and Ag33, directed by inner anion templates (CrO42− and/or Cl), are initially isolated as a mixed phase from identical reactants across a wide temperature range (20–80 °C). Interestingly, fine‐tuning the reaction temperature can realize pure phase synthesis of the two nanoclusters; that is, a metastable Ag54 is kinetically formed at a low temperature (20 °C), whereas such a system is steered towards a thermodynamically stable Ag33 at a relatively high temperature (80 °C). Electrospray ionization mass spectrometry illustrates that the stability of Ag33 is superior to that of Ag54, which is further supported by density functional theory calculations. Importantly, the difference in structural stability can influence the pathway of 1,4‐bis(pyrid‐4‐yl)benzene induced transformation reaction starting from Ag54 and Ag33. The former undergoes a dramatic breakage‐reorganization process to form an Ag31 dimer (Ag31), while the same product can be also achieved from the latter following a noninvasive ligand exchange process. Both the Ag54 and Ag33 have the potential for further remote laser ignition applications. This work not only demonstrates how temperature controls the isolation of a specific phase, but also sheds light on the structural transformation pathway of nanoclusters with different stability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3