Supramolecular Barrel‐Rosette Ion Channel Based on 3,5‐Diaminobenzoic Acid for Cation‐Anion Symport

Author:

Chattopadhayay Sandip1ORCID,Ghosh Anupam2,Kumar Mukhopadhyay Titas2ORCID,Sharma Rashmi1ORCID,Datta Ayan2ORCID,Talukdar Pinaki1ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan 411008 Pune Maharashtra India

2. School of Chemical Sciences Indian Association for the Cultivation of Science Raja Subodh Chandra Mallick Road, Jadavpur 700032 Kolkata West Bengal India

Abstract

AbstractThe structural tropology and functions of natural cation‐anion symporting channels have been continuously investigated due to their crucial role in regulating various physiological functions. To understand the physiological functions of the natural symporter channels, it is vital to develop small‐molecule‐based biomimicking systems that can provide mechanistic insights into the ion‐binding sites and the ion‐translocation pathways. Herein, we report a series of bis((R)‐(−)‐mandelic acid)‐linked 3,5‐diaminobenzoic acid based self‐assembled ion channels with distinctive ion transport ability. Ion transport experiment across the lipid bilayer membrane revealed that compound 1 b exhibits the highest transport activity among the series, and it has interesting selective co‐transporting functions, i.e., facilitates K+/ClO4 symport. Electrophysiology experiments confirmed the formation of supramolecular ion channels with an average diameter of 6.2±1 Å and single channel conductance of 57.3±1.9 pS. Selectivity studies of channel 1 b in a bilayer lipid membrane demonstrated a permeability ratio of , , and indicating the higher selectivity of the channel towards KClO4 over KCl salt. A hexameric assembly of a trimeric rosette of 1 b was subjected to molecular dynamics simulations with different salts to understand the supramolecular channel formation and ion selectivity pattern.

Funder

Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3