Affiliation:
1. School of Chemistry and Materials Science Nanjing Normal University 210023 Nanjing China
2. College of Engineering and Applied Sciences National Laboratory of Solid State Microstructures Nanjing University 210093 Nanjing China
Abstract
AbstractLayered transition metal oxides are extensively considered as appealing cathode candidates for potassium‐ion batteries (PIBs) due to their abundant raw materials and low cost, but their further implementations are limited by slow dynamics and impoverished structural stability. Herein, a layered composite having a P2 and P3 symbiotic structure is designed and synthesized to realize PIBs with large energy density and long‐term cycling stability. The unique intergrowth of P2 and P3 phases in the obtained layered oxide is plainly characterized by X‐ray diffraction refinement, high‐angle annular dark field and annular bright field‐scanning transmission electron microscopy at atomic resolution, and Fourier transformation images. The synergistic effect of the two phases of this layered P2/P3 composite is well demonstrated in K+ intercalation/extraction process. The as‐prepared layered composite can present a large discharge capacity with the remarkable energy density of 321 Wh kg−1 and also manifest excellent capacity preservation after 600 cycles of K+ uptake/removal.
Funder
National Natural Science Foundation of China
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献