Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction

Author:

Zhou Jian1,Xu Liangliang2,Gai Huiyu3,Xu Ning4,Ren Zhichu1,Hou Xianbiao1,Chen Zongkun3,Han Zhongkang4,Sarker Debalaya5,Levchenko Sergey V.6,Huang Minghua1ORCID

Affiliation:

1. School of Materials Science and Engineering Ocean University of China Qingdao 266100 China

2. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-Ro, Yuseong-Gu Daejeon 34141 Republic of Korea

3. Physical Chemistry University of Konstanz 78457 Konstanz Germany

4. School of Materials Science and Engineering Zhejiang University Hangzhou 310000 China

5. UGC-DAE Consortium for Scientific Research Indore, University Campus Khandwa Road Indore 452001, M.P. India

6. Independent Researcher Moscow 121205 Russia

Abstract

AbstractThe development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d‐band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Fundamental Research Funds for the Central Universities

Ministry of Science and Higher Education of the Russian Federation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3