Enhancing Carrier Transport via σ‐Linkage Length Modulation in D‐σ‐A Semiconductors for Photocatalytic Oxidation

Author:

Liu Weixu1,He Chang1,Huang Sijie1,Zhang Kunfeng12,Zhu Wei3,Liu Liping1,Zhang Zijian1,Zhu Enwei4,Chen Yu5,Chen Chen1ORCID,Zhu Yongfa1ORCID

Affiliation:

1. Department of Chemistry Tsinghua University 100084 Beijing P. R. China

2. College of Environmental Engineering Henan University of Technology 450052 Zhengzhou P. R. China

3. College of Environmental and Chemical Engineering Xi'an Polytechnic University 710048 Xi'an P. R. China

4. Key Laboratory of Preparation and Applications of Environmental Friendly Materials Jilin Normal University 130052 Changchun P. R. China

5. Institute of High Energy Physics Chinese Academy of Sciences 100049 Beijing P. R. China

Abstract

AbstractCarrier transport is an equally decisive factor as carrier separation for elevating photocatalytic efficiency. However, limited by indefinite structures and low crystallinities, studies on enhancing carrier transport of organic photocatalysts are still in their infancy. Here, we develop an σ‐linkage length modulation strategy to enhance carrier transport in imidazole‐alkyl‐perylene diimide (IMZ‐alkyl‐PDI, corresponding to D‐σ‐A) photocatalysts by controlling π–π stacking distance. Ethyl‐linkage can shorten π–π stacking distance (3.19 Å) the most among IMZ‐alkyl‐PDIs (where alkyl=none, ethyl, and n‐propyl) via minimizing steric hindrance between D and A moieties, which leads to the fastest carrier transport rates. Thereby, IMZ‐ethyl‐PDI exhibits remarkable enhancement in phenol degradation with 32‐fold higher rates than IMZ‐PDI, as well as the oxygen evolution rate (271‐fold increased). In microchannel reactors, IMZ‐ethyl‐PDI also presents 81.5 % phenol removal with high‐flux surface hydraulic loading (44.73 L m−2 h−1). Our findings provide a promising molecular design guideline for high‐performance photocatalysts and elucidate crucial internal carrier transport mechanisms.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3