Nanographene with a Nitrogen‐Doped Cavity

Author:

Wang Fei‐Fan1,Wang Yu‐Xiang1,Wu Qiong1,Chai Ling1,Chen Xuan‐Wen1,Tan Yuan‐Zhi1ORCID

Affiliation:

1. State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

Abstract

AbstractNitrogen‐doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well‐defined molecular cutout of graphene featuring N‐doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri‐N‐doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3