On‐Demand Catalysed n‐Doping of Organic Semiconductors

Author:

Stoeckel Marc‐Antoine123ORCID,Feng Kui4,Yang Chi‐Yuan23ORCID,Liu Xianjie3ORCID,Li Qifan3,Liu Tiefeng13,Jeong Sang Young5,Woo Han Young5ORCID,Yao Yao6,Fahlman Mats3ORCID,Marks Tobin J.6ORCID,Sharma Sakshi7ORCID,Motta Alessandro8ORCID,Guo Xugang4,Fabiano Simone123ORCID,Facchetti Antonio367ORCID

Affiliation:

1. Wallenberg Initiative Materials Science for Sustainability, ITN Linköping University SE-60174 Norrköping Sweden

2. n-ink AB Bredgatan 33 SE-60221 Norrköping Sweden

3. Laboratory of Organic Electronics, Department of Science and Technology Linköping University SE-60174 Norrköping Sweden

4. Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) Shenzhen, Guangdong 518055 China

5. Department of Chemistry, College of Science Korea University 145 Anam-ro, Seongbuk-gu Seoul 136-713 Republic of Korea

6. Department of Chemistry and the Materials Research Center Northwestern University Evanston, IL 60208 USA

7. School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332 USA

8. Dipartimento di Chimica Università di Roma “La Sapienza” p.le A. Moro 5 Rome I-00185 Italy

Abstract

AbstractA new approach to control the n‐doping reaction of organic semiconductors is reported using surface‐functionalized gold nanoparticles (f‐AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n‐type dopant precursor N‐DMBI‐H with several molecular and polymeric semiconductors at different temperatures with/without f‐AuNPs, vis‐à‐vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that while f‐AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~10–140 S cm−1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions and will broaden the use of the corresponding n‐doped films in opto‐electronic devices such as thin‐film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

Funder

National Science Foundation

Air Force Research Laboratory

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

National Natural Science Foundation of China

National Research Foundation of Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3