Affiliation:
1. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
3. Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
4. School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China
5. Department of Physics College of Science United Arab Emirates University Al Ain 15551 United Arab Emirates
Abstract
AbstractHalide‐related surface defects on inorganic halide perovskite not only induce charge recombination but also severely limit the long‐term stability of perovskite solar cells. Herein, adopting density functional theory calculation, we verify that iodine interstitials (Ii) has a low formation energy similar to that of the iodine vacancy (VI) and is also readily formed on the surface of all‐inorganic perovskite, and it is regarded to function as an electron trap. We screen a specific 2,6‐diaminopyridine (2,6‐DAPy) passivator, which, with the aid of the combined effects from halogen‐Npyridine and coordination bonds, not only successfully eliminates the Ii and dissociative I2 but also passivates the abundant VI. Furthermore, the two symmetric neighboring ‐NH2 groups interact with adjacent halides of the octahedral cluster by forming hydrogen bonds, which further promotes the adsorption of 2,6‐DAPy molecules onto the perovskite surface. Such synergetic effects can significantly passivate harmful iodine‐related defects and undercoordinated Pb2+, prolong carrier lifetimes and facilitate the interfacial hole transfer. Consequently, these merits enhance the power‐conversion efficiency (PCE) from 19.6 % to 21.8 %, the highest value for this type of solar cells, just as importantly, the 2,6‐DAPy‐treated CsPbI3−xBrx films show better environmental stability.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献