New Lead‐free Hybrid Layered Double Perovskite Halides: Synthesis, Structural Transition and Ultralow Thermal Conductivity

Author:

Mandal Arnab1,Goswami Sayan1,Das Subarna1,Swain Diptikanta2,Biswas Kanishka1ORCID

Affiliation:

1. New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O. Bangalore 560064 India.

2. Institute of Chemical Technology- IndianOil Odisha Campus Bhubaneswar 751013 India

Abstract

AbstractHybrid layered double perovskites (HLDPs), representing the two‐dimensional manifestation of halide double perovskites, have elicited considerable interest owing to their intricate chemical bonding hierarchy and structural diversity. This intensified interest stems from the diverse options available for selecting alternating octahedral coordinated trivalent [M(III)] and monovalent metal centers [M(I)], along with the distinctive nature of the cationic organic amine located between the layers. Here, we have synthesized three new compounds with general formula (R′/R′′)4/2M(III)M(I)Cl8; where R′=C3H7NH3 (i.e. 3N) and R′′=NH3C4H8NH3 (i.e. 4N4); M(III)=In3+ or Ru3+; M(I)=Cu+ by simple solution‐based acid precipitation method. The structural analysis reveals that (4N4)2CuInCl8 and (4N4)2CuRuCl8 adopt the layered Dion Jacobson (DJ) structure, whereas (3N)4CuInCl8 exhibits layered Ruddlesden Popper (RP) structure. The alternative octahedra within the inorganic layer display distortions and tilting. Three compounds show temperature‐dependent structural phase transitions where changes in the staking of inorganic layer, extent of octahedral tilting and reorientation of organic spacers with temperature have been noticed. We have achieved ultralow lattice thermal conductivity (κL) in the HLDPs in the 2 to 300 K range, marking a distinctive feature within the realm of HLDP systems. The RP‐HLDP compound, (3N)4CuInCl8, demonstrates anisotropy in κL while measured parallel and perpendicular to layer stacking, showcasing ultralow κL of 0.15 Wm−1K−1 at room temperature, which is one of the lowest values obtained among Pb‐free metal halide perovskite. The observed ultralow κL in three new HLDPs is attributed to significant lattice anharmonicity arising from the chemical bonding heterogeneity and soft crystal structure, which resulted in low‐energy localized optical phonon modes that suppress heat‐carrying acoustic phonons.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3