Affiliation:
1. College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
Abstract
AbstractMetal‐organic frameworks (MOFs) that exhibit dynamic phase‐transition behavior under external stimuli could have great potential in adsorptive separations. Here we report on a zinc‐based microporous MOF (JNU‐80) and its reversible transformation between two crystalline phases: large pore (JNU‐80‐LP) and narrow pore (JNU‐80‐NP). Specifically, JNU‐80‐LP can undergo a dehydration‐induced cluster consolidation under heat treatment, resulting in JNU‐80‐NP with a reduced channel that allows exclusion of di‐branched hexane isomers while high adsorption of linear and mono‐branched hexane isomers. We further demonstrate the fabrication of MOF‐polymer composite (JNU‐80‐NP‐block) and its application in the purification of di‐branched isomers from liquid‐phase hexane mixtures (98 % di‐branched) at room temperature, affording the di‐branched hexane isomers with 99.5 % purity and close to 90 % recovery rate over ten cycles. This work illustrates an interesting dehydration‐induced cluster consolidation in MOF structure and the ensuing channel shrinkage for sieving di‐branched hexane isomers, which may have important implications for the development of MOFs with dynamic behavior and their potential applications in non‐thermal driven separation technologies.
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献