Affiliation:
1. Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong (SAR) China
2. SUSTech Energy Institute for Carbon Neutrality Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China
3. Department of Chemistry Southern University of Science and Technology Shenzhen 518055 P. R. China
4. Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
Abstract
AbstractNon‐covalent interactions play an essential role in directing the self‐assembly of hybrid organic–inorganic crystals. In hybrid halide perovskites, hydrogen bonding has been the paramount non‐covalent interaction. Here, we show another non‐covalent interaction, namely, the halogen bond interaction, that directs a symmetry‐breaking assembly in a new series of two‐dimensional (2D) perovskites (ICH2CH2NH3)2(CH3NH3)n−1PbnI3n+1 (n is the layer thickness, n=1–4). Structural analysis shows that the halogen bond strength varies with the layer thickness. For the odd number (n=1, 3) layered perovskites, stronger halogen interaction leads to centrosymmetric structures, whereas for the n=2 layered perovskites, weaker halogen bonds result in non‐centrosymmetric structures. Transient reflection spectroscopy shows a suppressed radiative recombination rate (k2≈0) and prolonged spin lifetime for n=2 structure, suggesting an enhanced Rashba band splitting effect. The structural asymmetry is further confirmed with a reversible bulk photovoltaic effect. Our work provides a new design strategy to enable hybrid perovskites with emerging properties and functionalities associated with structural asymmetry.
Funder
Young Scientists Fund
National Natural Science Foundation of China
Hong Kong University of Science and Technology
Subject
General Chemistry,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献