Affiliation:
1. School of Chemistry Beihang University Beijing 100191 China
2. School of Chemistry Engineering Northeast Electric Power University Jilin 132012 China
Abstract
AbstractGraphite (Gr) has been considered as the most promising anode material for potassium‐ion batteries (PIBs) commercialization due to its high theoretical specific capacity and low cost. However, Gr‐based PIBs remain unfeasible at low temperature (LT), suffering from either poor kinetics based on conventional carbonate electrolytes or K+‐solvent co‐intercalation issue based on typical ether electrolytes. Herein, a high‐performance Gr‐based LT rechargeable PIB is realized for the first time by electrolyte chemistry. Applying unidentate‐ether‐based molecule as the solvent dramatically weakens the K+‐solvent interactions and lowers corresponding K+ de‐solvation kinetic barrier. Meanwhile, introduction of steric hindrance suppresses co‐intercalation of K+‐solvent into Gr, greatly elevating operating voltage and cyclability of the full battery. Consequently, the as‐prepared Gr||prepotassiated 3,4,9,10‐perylene‐tetracarboxylicacid‐dianhydride (KPTCDA) full PIB can reversibly charge/discharge between −30 and 45 °C with a considerable energy density up to 197 Wh kgcathode−1 at −20 °C, hopefully facilitating the development of LT PIBs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Subject
General Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献