Unlocking a Dual‐Channel Pathway in CO2 Hydrogenation to Methanol over Single‐Site Zirconium on Amorphous Silica

Author:

Yang Meng12,Yu Jiafeng1ORCID,Zimina Anna34ORCID,Sarma Bidyut Bikash34ORCID,Grunwaldt Jan‐Dierk34ORCID,Zada Habib12,Wang Linkai1,Sun Jian1ORCID

Affiliation:

1. Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 116023 Dalian China

2. University of Chinese Academy of Sciences 100049 Beijing China

3. Institute of Catalysis Research and Technology (IKFT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

4. Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstraße 20 76131 Karlsruhe Germany

Abstract

AbstractConverting CO2 into methanol on a large scale is of great significance in the sustainable methanol economy. Zirconia species are considered to be an essential support in Cu‐based catalysts due to their excellent properties for CO2 adsorption and activation. However, the evolution of Zr species during the reaction and the effect of their structure on the reaction pathways remain unclear. Herein, single‐site Zr species in an amorphous SiO2 matrix are created by enhancing the Zr−Si interaction in Cu/ZrO2‐SiO2 catalysts. In situ X‐ray absorption spectroscopy (XAS) reveals that the coordination environment of single‐site Zr is sensitive to the atmosphere and reaction conditions. We demonstrate that the CO2 adsorption occurs preferably on the interface of Cu and single‐site Zr rather than on ZrO2 nanoparticles. Methanol synthesis in reverse water‐gas‐shift (RWGS)+CO‐hydro pathway is verified only over single‐dispersed Zr sites, whereas the ordinary formate pathway occurs on ZrO2 nanoparticles. Thus, it expands a non‐competitive parallel pathway as a supplement to the dominant formate pathway, resulting in the enhancement of Cu activity sixfold and twofold based on Cu/SiO2 and Cu/ZrO2 catalysts, respectively. The establishment of this dual‐channel pathway by single‐site Zr species in this work opens new horizons for understanding the role of atomically dispersed oxides in catalysis science.

Funder

National Equipment Program of China

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Dalian Science and Technology Innovation Fund

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3