Pore Modulation of Hydrogen‐Bonded Organic Frameworks for Efficient Separation of Propylene

Author:

Cai Youlie1ORCID,Gao Junkuo1ORCID,Li Jing‐Hong2,Liu Puxu3,Zheng Yanchun1,Zhou Wei4,Wu Hui4,Li Libo3,Lin Rui‐Biao2,Chen Banglin5ORCID

Affiliation:

1. School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China

2. Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry IGCME Sun Yat-Sen University Guangzhou 510275 China

3. College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan 030024 China

4. NST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA

5. Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China

Abstract

AbstractDeveloping hydrogen‐bonded organic frameworks (HOFs) that combine functional sites, size control, and storage capability for targeting gas molecule capture is a novel and challenging venture. However, there is a lack of effective strategies to tune the hydrogen‐bonded network to achieve high‐performance HOFs. Here, a series of HOFs termed as HOF‐ZSTU‐M (M=1, 2, and 3) with different pore structures are obtained by introducing structure‐directing agents (SDAs) into the hydrogen‐bonding network of tetrakis (4‐carboxyphenyl) porphyrin (TCPP). These HOFs have distinct space configurations with pore channels ranging from discrete to continuous multi‐dimensional. Single‐crystal X‐ray diffraction (SCXRD) analysis reveals a rare diversity of hydrogen‐bonding models dominated by SDAs. HOF‐ZSTU‐2, which forms a strong layered hydrogen‐bonding network with ammonium (NH4+) through multiple carboxyl groups, has a suitable 1D “pearl‐chain” channel for the selective capture of propylene (C3H6). At 298 K and 1 bar, the C3H6 storage density of HOF‐ZSTU‐2 reaches 0.6 kg L−1, representing one of the best C3H6 storage materials, while offering a propylene/propane (C3H6/C3H8) selectivity of 12.2. Theoretical calculations and in situ SCXRD provide a detailed analysis of the binding strength of C3H6 at different locations in the pearl‐chain channel. Dynamic breakthrough tests confirm that HOF‐ZSTU‐2 can effectively separate C3H6 from multi‐mixtures.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3