Theoretical Prediction Leads to Synthesize GDY Supported InOx Quantum Dots for CO2 Reduction

Author:

He Feng1ORCID,Chen Xi12,Xue Yurui13,Li Yuliang12ORCID

Affiliation:

1. CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. University of Chinese Academy of Sciences Beijing 100190 P. R. China

3. Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion Science School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China

Abstract

AbstractThe preparation of formic acid by direct reduction of carbon dioxide is an important basis for the future chemical industry and is of great significance. Due to the serious shortage of highly active and selective electrocatalysts leading to the development of direct reduction of carbon dioxide is limited. Herein the target catalysts with high CO2RR activity and selectivity were identified by integrating DFT calculations and high‐throughput screening and by using graphdiyne (GDY) supported metal oxides quantum dots (QDs) as the ideal model. It is theoretically predicted that GDY supported indium oxide QDs (i.e., InOx/GDY) is a new heterostructure electrocatalyst candidate with optimal CO2RR performance. The interfacial electronic strong interactions effectively regulate the surface charge distribution of QDs and affect the adsorption/desorption behavior of HCOO* intermediate during CO2RR to achieve highly efficient CO2 conversion. Based on the predicted composition and structure, we synthesized the advanced catalytic system, and demonstrates superior CO2‐to‐HCOOH conversion performance. The study presents an effective strategy for rational design of highly efficient heterostructure electrocatalysts to promote green chemical production.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3