Discovering Electrochemistry with an Electrochemistry‐Informed Neural Network (ECINN)

Author:

Chen Haotian1ORCID,Yang Minjun1,Smetana Bedřich2,Novák Vlastimil2,Matějka Vlastimil2,Compton Richard G.1ORCID

Affiliation:

1. Department of Chemistry Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Road OX1 3QZ Oxford UK

2. Department of chemistry and physico-chemical processes Faculty of materials science and technology VSB—Technical University of Ostrava 17. listopadu 2172/15 70800 Ostrava-Poruba Czech Republic

Abstract

AbstractMachine learning is increasingly integrated into chemistry research by guiding experimental procedures, correlating structure and function, interpreting large experimental datasets, to distill scientific insights that might be challenging with traditional methods. Such applications, however, largely focus on gaining insights via big data and/or big computation, while neglecting the valuable chemical prior knowledge dwelling in chemists’ minds. In this paper, we introduce an Electrochemistry‐Informed Neural Network (ECINN) by explicitly embedding electrochemistry priors including the Butler–Volmer (BV), Nernst and diffusion equations on the backbone of neural networks for multi‐task discovery of electrochemistry parameters. We applied the ECINN to voltammetry experiments of and redox couples to discover electrode kinetics and mass transport parameters. Notably, ECINN seamlessly integrated mass transport with BV to analyze the entire voltammogram to infer transfer coefficients directly, so offering a new approach to Tafel analysis by outdating various mass transport correction methods. In addition, ECINN can help discover the nature of electron transfer and is shown to refute incorrect physics if imposed. This work encourages chemists to embed their domain knowledge into machine learning models to start a new paradigm of chemistry‐informed machine learning for better accountability, interpretability, and generalization.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

European Commission

Publisher

Wiley

Reference50 articles.

1. C. Zhou R. C. Paffenroth Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Association for Computing Machinery Halifax 2017 pp. 665–674.

2. Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider

3. How will generative AI disrupt data science in drug discovery?

4.  

5. Experimental discovery of structure–property relationships in ferroelectric materials via active learning

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3