Stabilizing Lattice Oxygen through Mn Doping in NiCo2O4‐δ Spinel Electrocatalysts for Efficient and Durable Acid Oxygen Evolution

Author:

Zhao Hongyu1,Zhu Liu2,Yin Jie1ORCID,Jin Jing1,Du Xin3,Tan Lei4,Peng Yong2,Xi Pinxian1,Yan Chun‐Hua15

Affiliation:

1. State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Frontiers Science Center for Rare Isotopes Lanzhou University Lanzhou 730000 China

2. School of Materials and Energy Electron Microscopy Centre of Lanzhou University Lanzhou University Lanzhou 730000 China

3. College of Chemistry Zhengzhou University Zhengzhou 450001 China.

4. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education Lanzhou University Lanzhou 730000 China

5. Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications Peking University. The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry College of Chemistry and Molecular Engineering Peking University Beijing 100871 China

Abstract

AbstractDesign the electrocatalysts without noble metal is still a challenge for oxygen evolution reaction (OER) in acid media. Herein, we reported the manganese (Mn) doping method to decrease the concentration of oxygen vacancy (VO) and form the Mn−O structure adjacent octahedral sites in spinel NiCo2O4‐δ (NiMn1.5Co3O4‐δ), which highly enhanced the activity and stability of spinel NiCo2O4‐δ with a low overpotential (η) of 280 mV at j=10 mA cm−2 and long‐term stability of 80 h in acid media. The isotopic labelling experiment based on differential electrochemical mass spectrometry (DEMS) clearly demonstrated the lattice oxygen in NiMn1.5Co3O4‐δ is more stable due to strong Mn−O bond and shows synergetic adsorbate evolution mechanism (SAEM) for acid OER. Density functional theory (DFT) calculations reveal highly increased oxygen vacancy formation energy (EVO) of NiCo2O4‐δ after Mn doping. More importantly, the highly hydrogen bonding between Mn−O and *OOH adsorbed on adjacent Co octahedral sites promote the formation of *OO from *OOH due to the greatly enhanced charge density of O in Mn substituted sites.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3