Ultrathin CuF2‐Rich Solid‐Electrolyte Interphase Induced by Cation‐Tailored Double Electrical Layer toward Durable Sodium Storage

Author:

Song Keming1ORCID,Wang Xiang1,Xie Zhengkun1,Zhao Zhiwei2ORCID,Fang Zhe3,Zhang Zhengfeng4ORCID,Luo Jun1,Yan Pengfei4ORCID,Peng Zhangquan2ORCID,Chen Weihua15ORCID

Affiliation:

1. College of Chemistry & Green Catalysis Center Zhengzhou University Zhengzhou 450001 P. R. China

2. Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 Liaoning P. R. China

3. Zhongyuan Univ. Technol., Ctr. Adv. Mat. Res. Zhengzhou 450007 P. R. China

4. Beijing Key Laboratory of Microstructure and Properties of Solids Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 P. R. China

5. Longzihu New Energy Laboratory Zhengzhou Institute of Emerging Industrial Technology Henan University Zhengzhou 450000 P. R. China

Abstract

AbstractSolid‐electrolyte interphase (SEI) seriously affects battery's cycling life, especially for high‐capacity anode due to excessive electrolyte decomposition from particle fracture. Herein, we report an ultrathin SEI (3–4 nm) induced by Cu+‐tailored double electrical layer (EDL) to suppress electrolyte consumption and enhance cycling stability of CuS anode in sodium‐ion batteries. Unique EDL with SO3CF3‐Cu complex absorbing on CuS in NaSO3CF3/diglyme electrolyte is demonstrated by in situ surface‐enhanced Raman, Cyro‐TEM and theoretical calculation, in which SO3CF3‐Cu could be reduced to CuF2‐rich SEI. Dispersed CuF2 and F‐containing compound can provide good interfacial contact for formation of ultrathin and stable SEI film to minimize electrolyte consumption and reduce activation energy of Na+ transport. As a result, the modified CuS delivers high capacity of 402.8 mAh g−1 after 7000 cycles without capacity decay. The insights of SEI construction pave a way for high‐stability electrode.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3