Identification of direct anchoring sites for monoatomic dispersion of precious metals (Pt, Pd, Ag) on CeO2 support

Author:

Wang Fei1,Li Kai2,Li Bolang2,Wang Chunxue2,Li Zhao2,Zhang Yan3,Shan Wenpo3,Yu Yunbo4,Zhang Changbin4,Fu Qiang5,Ning Ping6,Francisco Joseph S.7,Zeng Xiao Cheng8,He Hong4

Affiliation:

1. Kunming University of Science and Technology Faculty of Environmental Science and Engineering, CHINA

2. Kunming University of Science and Technology Faculty of Environmental Science and Engineering CHINA

3. Chinese Academy of Sciences Institute of Urban Environment CHINA

4. Chinese Academy of Sciences Research Center for Eco-Environmental Sciences CHINA

5. Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA

6. Kunming University of Science and Technology Department of Materials Science & Engineering CHINA

7. University of Pennsylvania Department of Earth and Environmental Science and Department of Chemistry 251 Hayden Hall 240 South 33rd Street 19104-6316 Philadelphia UNITED STATES

8. City University of Hong Kong Department of Materials Science & Engineering HONG KONG

Abstract

Monoatomic dispersion of precious metals on the surface of CeO2 nanocrystals is a highly practical approach for dramatically reducing the usage of precious metals while exploiting the unique properties of single‐atom catalysts. However, the specific atomic sites for anchoring precious metal atoms on the CeO2 support and underlying chemical mechanism remain partially unknown. Herein, we show that the terminal hydroxyls on the (100) surface are the most stable sites for anchoring Ag atoms on CeO2, indicating that CeO2 nanocubes are the most efficient substrates to achieve monoatomic dispersion of Ag. Importantly, the newly identified chemical mechanism for single‐metal‐atom dispersion on CeO2 nanocubes appears to be generic and can thus be extended to other precious metals (Pt and Pd). In fact, our experiments also show that atomically dispersed Pt/Pd species exhibit morphology‐ and temperature‐dependent CO selectivity in the catalytic CO2 hydrogenation reaction.

Publisher

Wiley

Subject

General Chemistry,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3