Photoinduced Precise Synthesis of Diatomic Ir1Pd1‐In2O3 for CO2 Hydrogenation to Methanol via Angstrom‐Scale‐Distance Dependent Synergistic Catalysis

Author:

Chen Jie1,Zhang Dongjian1,Liu Bing1,Zheng Ke1,Li Yufeng1,Xu Yuebing1,Li Zaijun1,Liu Xiaohao1ORCID

Affiliation:

1. Department of Chemical Engineering School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China

Abstract

AbstractThe atomically dispersed metal catalysts with full atomic utilization and well‐defined site structure hold great promise for various catalytic reactions. However, the single metallic site limits the comprehensive reaction performance in most reactions. Here, we demonstrated a photo‐induced neighbour‐deposition strategy for the precise synthesis of diatomic Ir1Pd1 on In2O3 applied for CO2 hydrogenation to methanol. The proximity synergism between diatomic sites enabled a striking promotion in both CO2 conversion (10.5 %) and methanol selectivity (97 %) with good stability of 100 h run. It resulted in record‐breaking space‐time yield to methanol (187.1 gMeOH gmetal−1 hour−1). The promotional effect mainly originated from stronger CO2 adsorption on Ir site with assistance of H‐spillover from Pd site, thus leading to a lower energy barrier for *HCOO pathway. It was confirmed that this synergistic effect strongly depended on the dual‐site distance in an angstrom scale, which was attributed to weaker *H spillover and less electron transfer from Pd to Ir site as the Pd‐to‐Ir distance increased. The average dual‐site distance was evaluated by our firstly proposed photoelectric model. Thus, this study introduced a pioneering strategy to precisely synthesize homonuclear/heteronuclear diatomic catalysts for facilitating the desired reaction route via diatomic synergistic catalysis.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3