Harnessing Catalytic RNA Circuits for Construction of Artificial Signaling Pathways in Mammalian Cells

Author:

Wu Chao‐Qun1,Wu Ruo‐Yue1,Zhang Qiu‐Long12,Wang Liang‐Liang1,Wang Yang1,Dai Chu1,Zhang Chen‐Xi1,Xu Liang1ORCID

Affiliation:

1. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China

2. School of Pharmacy and Medical Technology Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province Putian University Putian 351100 China

Abstract

AbstractEngineering of genetic networks with artificial signaling pathways (ASPs) can reprogram cellular responses and phenotypes under different circumstances for a variety of diagnostic and therapeutic purposes. However, construction of ASPs between originally independent endogenous genes in mammalian cells is highly challenging. Here we report an amplifiable RNA circuit that can theoretically build regulatory connections between any endogenous genes in mammalian cells. We harness the system of catalytic hairpin assembly with combination of controllable CRISPR‐Cas9 function to transduce the signals from distinct messenger RNA expression of trigger genes into manipulation of target genes. Through introduction of these RNA‐based genetic circuits, mammalian cells are endowed with autonomous capabilities to sense the changes of RNA expression either induced by ligand stimuli or from various cell types and control the cellular responses and fates via apoptosis‐related ASPs. Our design provides a generalized platform for construction of ASPs inside the genetic networks of mammalian cells based on differentiated RNA expression.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3