Affiliation:
1. Key Laboratory of Mesoscopic Chemistry State Key Laboratory of Coordination Chemistry State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University No.168, Xianlin Road Nanjing 210023 China
2. Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No.168, Xianlin Road Nanjing 210023 China
3. Beijing National Laboratory for Molecular Sciences Beijing 100190 China
Abstract
AbstractNitrate‐containing industrial wastewater poses a serious threat to the global food security and public health safety. As compared to the traditional microbial denitrification, electrocatalytic nitrate reduction shows better sustainability with ultrahigh energy efficiency and the production of high‐value ammonia (NH3). However, nitrate‐containing wastewater from most industrial processes, such as mining, metallurgy, and petrochemical engineering, is generally acidic, which contradicts the typical neutral/alkaline working conditions for both denitrifying bacteria and the state‐of‐the‐art inorganic electrocatalysts, leading to the demand for pre‐neutralization and the problematic hydrogen evaluation reaction (HER) competition and catalyst dissolution. Here, we report a series of Fe2M (M=Fe, Co, Ni, Zn) trinuclear cluster metal–organic frameworks (MOFs) that enable the highly efficient electrocatalytic nitrate reduction to ammonium under strong acidic conditions with excellent stability. In pH=1 electrolyte, the Fe2Co‐MOF demonstrates the NH3 yield rate of 20653.5 μg h−1 mg−1site with 90.55 % NH3‐Faradaic efficiency (FE), 98.5 % NH3‐selectivity and up to 75 hr of electrocatalytic stability. Additionally, successful nitrate reduction in high‐acidic conditions directly produce the ammonium sulfate as nitrogen fertilizer, avoiding the subsequent aqueous ammonia extraction and preventing the ammonia spillage loss. This series of cluster‐based MOF structures provide new insights into the design principles of high‐performance nitrate reduction catalysts under environmentally‐relevant wastewater conditions.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
General Chemistry,Catalysis
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献