A Triply‐Periodic‐Minimal‐Surface Structured Interphase based on Fluorinated Polymers Strengthening High‐energy Lithium Metal Batteries

Author:

Ma Cong1ORCID,Zou Shihui2ORCID,Wu Yuxuan1,Yue Ke1,Cai Xiaohan1,Wang Yao1ORCID,Nai Jianwei1ORCID,Guo Tianqi3ORCID,Tao Xinyong1ORCID,Liu Yujing1ORCID

Affiliation:

1. College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China

2. Key Lab of Applied Chemistry of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 China

3. Department of Advanced Materials and Computing International Iberian Nanotechnology Laboratory (INL) 4715-330 Braga Portugal

Abstract

AbstractThe challenge of constructing a mechanically robust yet lightweight artificial solid‐electrolyte interphase layer on lithium (Li) anodes highlights a trade‐off between high battery safety and high energy density. Inspired by the intricate microstructure of the white sea urchin, we first develop a polyvinyl fluoride‐hexafluoropropylene (PVDF‐HFP) interfacial layer with a triple periodic minimal surface structure (TPMS) that could offer maximal modulus with minimal weight. This design endows high mechanical strength to an ordered porous structure, effectively reduces local current density, polarization, and internal resistance, and stabilizes the anode interface. At a low N/P ratio of ~3, using LiFePO4 as the cathode, Li anodes protected by TPMS‐structured PVDF‐HFP achieve an extremely low capacity‐fading‐rate of approximately 0.002 % per cycle over 200 cycles at 1 C, with an average discharge capacity of 142 mAh g−1. Meanwhile, the TPMS porous structure saves 50 wt % of the interfacial layer mass, thereby enhancing the energy density of the battery. The TPMS structure is conducive to large‐scale additive manufacturing, which will provide a reference for the future development of lightweight, high‐energy‐density secondary batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3