Side‐Chain Chemistry Governs Hierarchical Order of Charge‐Complementary β‐sheet Peptide Coassemblies

Author:

Liu Renjie1,Dong Xin2,Seroski Dillon T.1,Soto Morales Bethsymarie1,Wong Kong M.3,Robang Alicia S.3,Melgar Lucas1,Angelini Thomas E.4,Paravastu Anant K.3,Hall Carol K.2,Hudalla Gregory A.1ORCID

Affiliation:

1. J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida Gainesville FL-32611 USA

2. Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC-27695 USA

3. School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA-30332 USA

4. Department of Mechanical and Aerospace Engineering University of Florida Gainesville FL-32611 USA

Abstract

AbstractSelf‐assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side‐chain chemistry affects the hierarchical co‐assembly of a family of charge‐complementary β‐sheet‐forming peptide pairs known as CATCH(X+/Y−) at physiologic pH and ionic strength in water. In a concentration‐dependent manner, the CATCH(6K+) (Ac‐KQKFKFKFKQK‐Am) and CATCH(6D−) (Ac‐DQDFDFDFDQD‐Am) pair formed either β‐sheet‐rich microspheres or β‐sheet‐rich gels with a micron‐scale plate‐like morphology, which were not observed with other CATCH(X+/Y−) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N‐ and C‐terminal amino acids in CATCH(6K+) and CATCH(6D−) to Qs, increased observed co‐assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)‐green fluorescent protein fusions could be incorporated into the β‐sheet plates and microspheres formed by the CATCH(6K+/6D−) pair, demonstrating the potential to endow functionality.

Funder

National Science Foundation

National Institutes of Health

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3