Spontaneous Symmetry Breaking of Achiral Molecules Leading to the Formation of Homochiral Superstructures that Exhibit Mechanoluminescence

Author:

Liu Zheng‐Fei1,Ye Xin‐Yi1,Chen Lihua2,Niu Li‐Ya1,Jin Wei Jun1,Zhang Shaodong2ORCID,Yang Qing‐Zheng1

Affiliation:

1. Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China

2. School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

Abstract

AbstractChirality, with its intrinsic symmetry‐breaking feature, is frequently utilized in the creation of acentric crystalline functional materials that exhibit intriguing optoelectronic properties. On the other hand, the development of chiral crystals from achiral molecules offers a solution that bypasses the need for enantiopure motifs, presenting a promising alternative and thereby expanding the possibilities of the self‐assembly toolkit. Nevertheless, the rational design of achiral molecules that prefer spontaneous symmetry breaking during crystallization has so far been obscure. In this study, we present a series of six achiral molecules, demonstrating that when these conformationally flexible molecules adopt a cis‐conformation and engage in multiple non‐covalent interactions along a helical path, they collectively self‐assemble into chiral superstructures consisting of single‐handed supramolecular columns. When these homochiral supramolecular columns align in parallel, they form polar crystals that exhibit intense luminescence upon grinding or scraping. We therefore demonstrate our molecular design strategy could significantly increase the likelihood of symmetry breaking in achiral molecular synthons during self‐assembly, offering a facile access to novel chiral crystalline materials with unique optoelectronic properties.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3