Hydrogels with Differentiated Hydrogen‐Bonding Networks for Bioinspired Stress Response

Author:

Zhao Wei1,Wu Baohu2ORCID,Lei Zhouyue1,Wu Peiyi1

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China

2. Jülich Centre for Neutron Science (JCNS) Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich Lichtenbergstr Garching 185748 Germany

Abstract

AbstractStress response, an intricate and autonomously coordinated reaction in living organisms, holds a reversible, multi‐path, and multi‐state nature. However, existing stimuli‐responsive materials often exhibit single‐step and monotonous reactions due to the limited integration of structural components. Inspired by the cooperative interplay of extensor and flexor cells within Mimosa's pulvini, we present a hydrogel with differentiated hydrogen‐bonding (H‐bonding) networks designed to enable the biological stress response. Weak H‐bonding domains resemble flexor cells, confined within a hydrophobic network stabilized by strong H‐bonding clusters (acting like extensor cells). Under external force, strong H‐bonding clusters are disrupted, facilitating water diffusion from the bottom layer and enabling transient expansion pressure gradient along the thickness direction. Subsequently, water diffuses upward, gradually equalizing the pressure, while weak H‐bonding domains undergo cooperative elastic deformation. Consequently, the hydrogel autonomously undergoes a sequence of reversible and pluralistic motion responses, similar to Mimosa's touch‐triggered stress response. Intriguingly, it exhibits stress‐dependent color shifts under polarized light, highlighting its potential for applications in time‐sensitive “double‐lock” information encryption systems. This work achieves the coordinated stress response inspired by natural tissues using a simple hydrogel, paving the way for substantial advancements in the development of intelligent soft robots.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3