Bayesian Optimization‐guided Discovery of High‐performance Methane Combustion Catalysts based on Multi‐component PtPd@CeZrOx Core–Shell Nanospheres

Author:

Feng Xilan1,Gong Xiangrui2,Liu Dapeng2ORCID,Li Yang1,Jiang Ying2,Zhang Yu23

Affiliation:

1. Department of Automation Science and Electrical Engineering Beihang University Beijing 100191 P. R. China

2. Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry Beihang University Beijing 100191 P. R. China

3. Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China

Abstract

AbstractFormula regulation of multi‐component catalysts by manual search is undoubtedly a time‐consuming task, which has severely impeded the development efficiency of high‐performance catalysts. In this work, PtPd@CeZrOx core–shell nanospheres, as a successful case study, is explicitly demonstrated how Bayesian optimization (BO) accelerates the discovery of methane combustion catalysts with the optimal formula ratio (the Pt/Pd mole ratio ranges from 1/2.33–1/9.09, and Ce/Zr from 1/0.22–1/0.35), which directly results in a lower conversion temperature (T50 approaching to 330 °C) than ones reported hitherto. Consequently, the best sample obtained could be efficiently developed after two rounds of iterations, containing only 18 experiments in all that is far less than the common human workload via the traditional trial‐and‐error search for optimal compositions. Further, this BO‐based machine learning strategy can be straightforward extended to serve the autonomous discovery in multi‐component material systems, for other desired properties, showing promising opportunities to practical applications in future.

Funder

Postdoctoral Research Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3