Affiliation:
1. National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang 330063 China
2. Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control Anhui Agricultural University Hefei 230036 China
3. Department of Chemical Engineering Chongqing University of Science and Technology Chongqing 401331 China
4. School of Life Science Jinggangshan University Ji'an 343009 China
Abstract
AbstractExtraction and recovery of lithium from reserves play a critical role in the sustainable development of energy due to the explosive growth of the lithium‐battery market. However, the low efficiency of extraction and recovery seriously threatens the sustainability of lithium supply. In this contribution, we fabricate a novel mechanically robust fluorine‐rich hydrogel, showing highly efficient Li+ extraction from Li‐containing solutions. The hydrogel was facilely fabricated by simple one‐pot polymerization of supramolecular nanosheets of fluorinated monomers, acrylic acid and a small amount of chemical crosslinkers. The hydrogel exhibits a remarkable lithium adsorption capacity (Qm Li+=122.3 mg g−1) and can be reused. Moreover, it can exclusively extract lithium ions from multiple co‐existing metal ions. Notably, the separation of Li+/Na+ in actual wastewater is achieved with a surprising separation factor of 153.72. The detailed characterizations as well as calculation showed that the specific coordination of Li−F plays a central role for both of the striking recovery capability and selectivity for Li+. Furthermore, an artificial device was constructed, displaying high efficiency of extracting lithium in various complex actual lithium‐containing wastewater. This work provides a new and promising avenue for the efficient extraction and recovery of lithium resource from complex lithium‐containing solutions.
Funder
Key Technologies Research and Development Program
Subject
General Chemistry,Catalysis
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献