Multivariate Machine Learning Models of Nanoscale Porosity from Ultrafast NMR Relaxometry

Author:

Fricke Sophia N.1ORCID,Salgado Mia1,Menezes Tamires2,Costa Santos Kátilla M.2,Gallagher Neal B.3,Song Ah‐Young14,Wang Jieyu1,Engler Kaitlyn1,Wang Yang1,Mao Haiyan5,Reimer Jeffrey A.14

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley CA 94720 USA

2. Department of Process Engineering Tiradentes University Aracaju SE 49010-390 Brazil

3. Chemometrics Eigenvector Research, Inc. Manson WA 98831 USA

4. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

5. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

Abstract

AbstractNanoporous materials are of great interest in many applications, such as catalysis, separation, and energy storage. The performance of these materials is closely related to their pore sizes, which are inefficient to determine through the conventional measurement of gas adsorption isotherms. Nuclear magnetic resonance (NMR) relaxometry has emerged as a technique highly sensitive to porosity in such materials. Nonetheless, streamlined methods to estimate pore size from NMR relaxometry remain elusive. Previous attempts have been hindered by inverting a time domain signal to relaxation rate distribution, and dealing with resulting parameters that vary in number, location, and magnitude. Here we invoke well‐established machine learning techniques to directly correlate time domain signals to BET surface areas for a set of metal‐organic frameworks (MOFs) imbibed with solvent at varied concentrations. We employ this series of MOFs to establish a correlation between NMR signal and surface area via partial least squares (PLS), following screening with principal component analysis, and apply the PLS model to predict surface area of various nanoporous materials. This approach offers a high‐throughput, non‐destructive way to assess porosity in c.a. one minute. We anticipate this work will contribute to the development of new materials with optimized pore sizes for various applications.

Funder

Grantham Foundation for the Protection of the Environment

Basic Energy Sciences

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3