Affiliation:
1. School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK
2. Department of Applied Science and Technology Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
3. Department of Chemistry Imperial College London, Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
Abstract
AbstractMetal‐organic cages (MOCs) are popular host architectures assembled from ligands and metal ions/nodes. Assembling structurally complex, low‐symmetry MOCs with anisotropic cavities can be limited by the formation of statistical isomer libraries. We set out to investigate the use of primary coordination‐sphere engineering (CSE) to bias isomer selectivity within homo‐ and heteroleptic PdnL2n cages. Unexpected differences in selectivities between alternative donor groups led us to recognise the significant impact of the second coordination sphere on isomer stabilities. From this, molecular‐level insight into the origins of selectivity between cis and trans diastereoisomers was gained, highlighting the importance of both host–guest and host‐solvent interactions, in addition to ligand design. This detailed understanding allows precision engineering of low‐symmetry MOC assemblies without wholesale redesign of the ligand framework, and fundamentally provides a theoretical scaffold for the development of stimuli‐responsive, shape‐shifting MOCs.
Funder
Diamond Light Source
Royal Society
H2020 European Research Council
Engineering and Physical Sciences Research Council
Subject
General Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献