Affiliation:
1. Department of Bioengineering School of Engineering and Applied Science University of Pennsylvania Philadelphia Pennsylvania 19104 USA
2. Department of Pharmacology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104 USA
Abstract
AbstractThere is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single‐cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single‐cell genomic, RNA, and protein analysis, their application to sub‐cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose‐based droplet microfluidic approach for single‐cell, single‐mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi‐step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95 % mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single‐mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Funder
National Human Genome Research Institute
Division of Cancer Epidemiology and Genetics, National Cancer Institute
National Institute of Mental Health and Neurosciences
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献