Realizing Persistent Zero Area Compressibility over a Wide Pressure Range in Cu2GeO4 by Microscopic Orthogonal‐Braiding Strategy

Author:

Zhang Xingyu12ORCID,Liu Youquan12,Molokeev Maxim S.345,Xu Bohui12,Jiang Xingxing1,Lin Zheshuai16ORCID

Affiliation:

1. Functional Crystals Lab Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China

2. University of the Chinese Academy of Sciences Beijing 100049 China

3. Laboratory of Crystal Physics Kirensky Institute of Physics Federal Research Center KSC SB RAS Krasnoyarsk 660036 Russia

4. Department of Physics Far Eastern State Transport University Khabarovsk 680021 Russia

5. International Research Center of Spectroscopy and Quantum Chemistry Siberian Federal University Krasnoyarsk 660041 Russia

6. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractZero area compressibility (ZAC) is an extremely rare mechanical response that exhibits an invariant two‐dimensional size under hydrostatic pressure. All known ZAC materials are constructed from units in two dimensions as a whole. Here, we propose another strategy to obtain the ZAC by microscopically orthogonal‐braiding one‐dimensional zero compressibility strips. Accordingly, ZAC is identified in a copper‐based compound with a planar [CuO4] unit, Cu2GeO4, that possesses an area compressibility as low as 1.58(26) TPa−1 over a wide pressure range from ≈0 GPa to 21.22 GPa. Based on our structural analysis, the subtle counterbalance between the shrinkage of [CuO4] and the expansion effect from the increase in the [CuO4]‐[CuO4] dihedral angle attributes to the ZAC response. High‐pressure Raman spectroscopy, in combination with first‐principles calculations, shows that the electron transfer from in‐plane bonding dx2‐y2 to out‐of‐plane nonbonding dz2 orbitals within copper atoms causes the counterintuitive extension of the [CuO4]‐[CuO4] dihedral angle under pressure. Our study provides an understanding on the pressure‐induced structural evolution of copper‐based oxides at an electronic level and facilitates a new avenue for the exploration of high‐dimensional anomalous mechanical materials.

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3