Selective Stereoretention of Carbohydrates upon C−C Cleavage Enabling D‐Glyceric Acid Production with High Optical Purity over a Ag/γ‐Al2O3 Catalyst

Author:

Yang Ruofeng1,Xu Shuguang2,Wang Xiaoyan3,Xiao Yuan1,Li Jianmei1,Hu Changwei1ORCID

Affiliation:

1. Key Laboratory of Green Chemistry and Technology Ministry of Education College of Chemistry Sichuan University No. 29 Wangjiang Road Chengdu Sichuan 610064 PR China

2. College of Chemical Engineering Sichuan University No.24 South Section 1 Yihuan Road Chengdu Sichuan 610065 PR China

3. Analysis and Test Center Sichuan University No. 29 Wangjiang Road Chengdu Sichuan 610064 PR China

Abstract

AbstractChiral carboxylic acid production from renewable biomass by chemocatalysis is vitally important for reducing our carbon footprint, but remains underdeveloped. We herein establish a strategy that make use of a stereogenic center of biomass to achieve a rare example of D‐glyceric acid production with the highest yield (86.8 %) reported to date as well as an excellent ee value (>99 %). Unlike traditional asymmetric catalysis, chiral catalysts/additives are not required. Ample experiments combined with quantum chemical calculations established the origins of the stereogenic center and catalyst performance. The chirality at C4 in D‐xylose was proved to be retained and successfully delivered to C2 in D‐glyceric acid during C−C cleavage. The remarkable cooperative‐roles of Ag+ and Ag0 in the constructed Ag/γ‐Al2O3 catalyst are disclosed as the crucial contributors. Ag+ was responsible for low‐temperature activation of D‐xylose, while Ag0 facilitated the generation of active O* from O2. Ag+ and active O* cooperatively promoted the precise cleavage of the C2−C3 bond, and more importantly O* allowed the immediate fast oxidization of the D‐glyceraldehyde intermediate to stabilize D‐glyceric acid, thereby inhibiting the side reaction that induced racemization. This strategy makes a significant breakthrough in overcoming the limitation of poor enantioselectivity in current chemocatalytic conversion of biomass.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3