Highly Stable Perovskite Oxides for Electrocatalytic Acidic NOx Reduction Streamlining Ammonia Synthesis from Air

Author:

Guo Xuecheng1,Wang Zhongliao2,Gao Yuan3,Zhang Chao1,Zhang Shuai3,Sang Shuaikang1,Ma Jun1,Sun Shuhui4,Murzin Dmitry Yu.5,Low Jingxiang1,Shao Tao3,Xiong Yujie1ORCID

Affiliation:

1. School of Chemistry and Materials Science, and Key Laboratory of Precision and Intelligent Chemistry University of Science and Technology of China Hefei, Anhui 230026 China

2. Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Normal University Huaibei, Anhui 235000 China

3. Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China

4. Institut National de la Recherche Scientifique (INRS) Centre Énergie Matériaux Télécommunications Québec J3X 1P7 Canada

5. Åbo Akademi University Henriksgatan 2 20500 Åbo/Turku Finland

Abstract

AbstractElectrochemical nitrogen oxide ions reduction reaction (NOxRR) shows great opportunity for ammonia production under ambient conditions. Yet, performing NOxRR in strong acidic conditions remains challenging due to the corrosion effect on the catalyst and competing hydrogen evolution reactions. Here, we demonstrate a stable La1.5Sr0.5Ni0.5Fe0.5O4 perovskite oxide for the NOxRR at pH 0, achieving a Faradaic efficiency for ammonia of approaching 100 % at a current density of 2 A cm−2 in a H‐type cell. At industrially relevant current density, the NOxRR system shows stable cell voltage and Faradaic efficiency for >350 h in membrane electrode assembly (MEA) at pH 0. By integrating the catalyst in a stacked MEA with a series connection, we have successfully obtained a record‐breaking 2.578 g h−1 NH3 production rate at 20 A. This catalyst‘s unique acid‐operability streamlines downstream ammonia utilization for direct ammonium salt production and upstream integration with NOx sources. Techno‐economic and lifecycle assessments reveal substantial economic advantages for this ammonia production strategy, even when coupled with a plasma‐based NOx production system, presenting a sustainable complement to the conventional Haber–Bosch process.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3