COF‐Topological Quantum Material Nano‐heterostructure for CO2 to Syngas Production under Visible Light

Author:

Dey Anupam1ORCID,Pradhan Jayita2,Biswas Sandip1ORCID,Ahamed Rahimi Faruk1ORCID,Biswas Kanishka2ORCID,Maji Tapas Kumar12ORCID

Affiliation:

1. Chemistry and Physics of Materials Unit (CPMU) School of Advanced Materials (SAMat) International Centre for Materials Science (ICMS) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) 560064 Jakkur Bangalore India

2. New Chemistry Unit (NCU) School of Advanced Materials (SAMat) International Centre for Materials Science (ICMS) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) 560064 Jakkur Bangalore India

Abstract

AbstractEfficient solar‐driven syngas production (CO+H2 mixture) from CO2 and H2O with a suitable photocatalyst and fundamental understanding of the reaction mechanism are the desired approach towards the carbon recycling process. Herein, we report the design and development of an unique COF‐topological quantum material nano‐heterostructure, COF@TI with a newly synthesized donor‐acceptor based COF and two dimensional (2D) nanosheets of strong topological insulator (TI), PbBi2Te4. The intrinsic robust metallic surfaces of the TI act as electron reservoir, minimising the fast electron‐hole recombination process, and the presence of 6s2 lone pairs in Pb2+ and Bi3+ in the TI helps for efficient CO2 binding, which are responsible for boosting overall catalytic activity. In variable ratio of acetonitrile‐water (MeCN : H2O) solvent mixture COF@TI produces syngas with different ratios of CO and H2. COF@TI nano‐heterostructure enables to produce higher amount of syngas with more controllable ratios of CO and H2 compared to pristine COF. The electron transfer route from COF to TI was realized from Kelvin probe force microscopy (KPFM) analysis, charge density difference calculation, excited state lifetime and photoelectrochemical measurements. Finally, a probable mechanistic pathway has been established after identifying the catalytic sites and reaction intermediates by in situ DRIFTS study and DFT calculation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3