Affiliation:
1. Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
2. Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
3. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
Abstract
AbstractMembrane‐based gas separations are crucial for an energy‐efficient future. However, it is difficult to develop membrane materials that are high‐performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd‐catalyzed C−O coupling reactions. The scaffold of these microporous polymers consists of rigid three‐dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution‐processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2/CH4 and (H2S+CO2)/CH4 selectivity in mixture tests as predicted by the dual‐mode sorption model. The structural tunability, stability, and ease‐of‐processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.
Funder
Office of Naval Research
National Science Foundation
Subject
General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献