Affiliation:
1. School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
2. School of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
3. Joint School of National University of Singapore Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China
Abstract
AbstractThe catalyst‐reconstruction makes it challenging to clarify the practical active sites and unveil the actual reaction mechanism during the CO2 electroreduction reaction (CO2RR). However, currently the impact of the electrolyte microenvironment in which the electrolyte is in contact with the catalyst is overlooked and might induce a chemical evolution, thus confusing the reconstruction process and mechanism. In this work, the carbonate adsorption properties of metal oxides were investigated, and the mechanism of how the electrolyte carbonate affect the chemical evolution of catalysts were discussed. Notably, Bi2O3 with weak carbonate adsorption underwent a chemical reconstruction to form the Bi2O2CO3/Bi2O3 heterostructure. Furthermore, in situ and ex situ characterizations unveiled the formation mechanism of the heterostructure. The in situ formed Bi2O2CO3/Bi2O3 heterostructure with strong electron interaction served as the highly active structure for CO2RR, achieving a formate Faradaic efficiency of 98.1 % at −0.8 Vvs RHE. Theoretical calculations demonstrate that the significantly tuned p‐orbit electrons of the Bi sites in Bi2O2CO3/Bi2O3 optimized the adsorption of the intermediate and lowered the energy barrier for the formation of *OCHO. This work elucidates the mechanism of electrolyte microenvironment for affecting catalyst reconstruction, which contributes to the understanding of reconstruction process and clarification of the actual catalytic structure.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin Municipality
Subject
General Chemistry,Catalysis
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献