Affiliation:
1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University 215123 Suzhou Jiangsu China
2. School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 201240 Shanghai China
3. School of Life Sciences Shanghai University 200444 Shanghai China
Abstract
AbstractPeptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS‐CoV‐2 on preferred tFNAs, we constructed a COVID‐19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS‐CoV‐2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献