Atomically Dispersed Iron Regulating Electronic Structure of Iron Atom Clusters for Electrocatalytic H2O2 Production and Biomass Upgrading

Author:

Xu Hui12,Zhang Shengbo12,Zhang Xinyuan12,Xu Min12,Han Miaomiao3,Zheng Li Rong4,Zhang Yunxia12,Wang Guozhong12,Zhang Haimin12ORCID,Zhao Huijun5

Affiliation:

1. Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei 230031 China

2. University of Science and Technology of China Hefei 230026 China

3. School of Science Huzhou University Huzhou 313000 China

4. Beijing Synchrotron Radiation Facility, institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. Centre for Catalysis and Clean Energy Griffith University Gold Coast Campus Queensland QLD 4222 Australia

Abstract

AbstractThe integration of highly active single atoms (SAs) and atom clusters (ACs) into an electrocatalyst is critically important for high‐efficiency two‐electron oxygen reduction reaction (2e ORR) to hydrogen peroxide (H2O2). Here we report a tandem impregnation‐pyrolysis‐etching strategy to fabricate the oxygen‐coordinated Fe SAs and ACs anchored on bacterial cellulose‐derived carbon (BCC) (FeSAs/ACs‐BCC). As the electrocatalyst, FeSAs/ACs‐BCC exhibits superior electrocatalytic activity and selectivity toward 2e ORR, affording an onset potential of 0.78 V (vs. RHE) and a high H2O2 selectivity of 96.5 % in 0.1 M KOH. In a flow cell reactor, the FeSAs/ACs‐BCC also achieves high‐efficiency H2O2 production with a yield rate of 12.51±0.18 mol gcat−1 h−1 and a faradaic efficiency of 89.4 %±1.3 % at 150 mA cm−2. Additionally, the feasibility of coupling the produced H2O2 and electro‐Fenton process for the valorization of ethylene glycol was explored in detail. The theoretical calculations uncover that the oxygen‐coordinated Fe SAs effectively regulate the electronic structure of Fe ACs which are the 2e ORR active sites, resulting in the optimal binding strength of *OOH intermediate for high‐efficiency H2O2 production.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3