Vanadium Oxides with Amorphous‐Crystalline Heterointerface Network for Aqueous Zinc‐Ion Batteries

Author:

Wang Zhihui1,Song Yu1ORCID,Wang Jing2,Lin Yulai1,Meng Jianming1,Cui Weibin3,Liu Xiao‐Xia145

Affiliation:

1. Department of Chemistry Northeastern University Shenyang 110819 China

2. Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemistry Engineering Yanshan University Qinhuangdao 066004 China

3. Key Laboratory of Electromagnetic Processing of Materials Ministry of Education Northeastern University Shenyang 110819 China

4. National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang 110819 China

5. Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Shenyang 110819 China

Abstract

AbstractRechargeable aqueous Zn‐VOxbatteries are attracting attention in large scale energy storage applications. Yet, the sluggish Zn2+diffusion kinetics and ambiguous structure–property relationship are always challenging to fulfil the great potential of the batteries. Here we electrodeposit vanadium oxide nanobelts (VO‐E) with highly disordered structure. The electrode achieves high capacities (e.g., ≈5 mAh cm−2, 516 mAh g−1), good rate and cycling performances. Detailed structure analysis indicates VO‐E is composed of integrated amorphous‐crystalline nanoscale domains, forming an efficient heterointerface network in the bulk electrode, which accounts for the good electrochemical properties. Theoretical calculations indicate that the amorphous‐crystalline heterostructure exhibits the favorable cation adsorption and lower ion diffusion energy barriers compared to the amorphous and crystalline counterparts, thus accelerating charge carrier mobility and electrochemical activity of the electrode.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Hebei Province

Department of Science and Technology, Hubei Provincial People's Government

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3