Ambient Catalytic Spinning of Polyethylene Nanofibers

Author:

Wu Ruikai12,Lenz Tim M.3,Alfayez Fayez Abdullah S1,Zhao Ruohan1,Rupper Patrick1,Perret Edith1,Lehner Sandro1,Jovic Milijana1,Gaan Sabyasachi1ORCID,Rieger Bernhard3,Heuberger Manfred12

Affiliation:

1. Laboratory of Advanced Fibers Empa Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland

2. Department of Materials ETH Zurich 8092 Zurich Switzerland

3. WACKER-Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany

Abstract

AbstractA novel single‐atom Ni(II) catalyst (Ni‐OH) is covalently immobilized onto the nano‐channels of mesoporous Santa Barbara Amorphous (SBA)‐15 particles and isotropic Anodized Aluminum Oxide (AAO) membrane for confined‐space ethylene extrusion polymerization. The presence of surface‐tethered Ni complexes (Ni@SBA‐15 and Ni@AAO) is confirmed by the inductively coupled plasma‐optical emission spectrometry (ICP‐OES) and X‐ray photoelectron spectroscopy (XPS). In the catalytic spinning process, the produced PE materials exhibit very homogeneous fibrous morphology at nanoscale (diameter: ~50 nm). The synthesized PE nanofibers extrude in a highly oriented manner from the nano‐reactors at ambient temperature. Remarkably high Mw (1.62×106 g mol−1), melting point (124 °C), and crystallinity (41.8 %) are observed among PE samples thanks to the confined‐space polymerization. The chain‐walking behavior of surface tethered Ni catalysts is greatly limited by the confinement inside the nano‐channels, leading to the formation of very low‐branched PE materials (13.6/1000 C). Due to fixed supported catalytic topology and room temperature, the filaments are expected to be free of entanglement. This work signifies an important step towards the realization of a continuous mild catalytic‐spinning (CATSPIN) process, where the polymer is directly synthesized into fiber shape at negligible chain branching and elegantly avoiding common limitations like thermal degradation or molecular entanglement.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3