Affiliation:
1. Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
2. Centre for Advanced Materials and Related Technology (CAMTEC) University of Victoria 3800 Finnerty Rd. Victoria BC V8W 2Y2 Canada
Abstract
AbstractMolecular differentiation by supramolecular sensors is typically achieved through sensor arrays, relying on the pattern recognition responses of large panels of isolated sensing elements. Here we report a new one‐pot systems chemistry approach to differential sensing in biological solutions. We constructed an adaptive network of three cross‐assembling sensor elements with diverse analyte‐binding and photophysical properties. This robust sensing approach exploits complex interconnected sensor‐sensor and sensor‐analyte equilibria, producing emergent supramolecular and photophysical responses unique to each analyte. We characterize the basic mechanisms by which an adaptive network responds to analytes. The inherently data‐rich responses of an adaptive network discriminate among very closely related proteins and protein mixtures without relying on designed protein recognition elements. We show that a single adaptive sensing solution provides better analyte discrimination using fewer response observations than a sensor array built from the same components. We also show the network's ability to adapt and respond to changing biological solutions over time.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献