Affiliation:
1. Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei 230031 P. R. China
2. University of Science and Technology of China Hefei 230026 P. R. China
3. School of Microelectronics Hefei University of Technology Hefei 230009 P. R. China
Abstract
AbstractSolution‐processed solar cells based on inorganic heterojunctions provide a potential approach to the efficient, stable and low‐cost solar cells required for the terrestrial generation of photovoltaic energy. Antimony trisulfide (Sb2S3) is a promising photovoltaic absorber. Here, an easily solution‐processed parallel planar heterojunction (PPHJ) strategy and related principle are developed to prepare efficient multiple planar heterojunction (PHJ) solar cells, and the PPHJ strategy boosts the efficiency of solution‐processed Sb2S3 solar cells up to 8.32 % that is the highest amongst Sb2S3 devices. The Sb2S3‐based PPHJ device consists of two kinds of conventional planar heterojunction (PHJ) subcells in a parallel connection: Sb2S3‐based PHJ subcells dominating the absorption and charge generation and CH3NH3PbI3‐based PHJ subcells governing the electron transport towards collection electrode, but it belongs to an Sb2S3 device in nature. The resulting PPHJ device combines together the distinctive structural features of Sb2S3 absorbing layer as a main absorber and the duplexity of well‐crystallized/oriented CH3NH3PbI3 layer in charge transportation as an additional absorber, while the presence of perovskite does not affect device stability. The PPHJ strategy maintains the facile preparation by the conventional sequential depositions of multiple layers, but eliminates the normal complexity in both tandem and parallel tandem PHJ systems.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献