Affiliation:
1. State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Tianshui South road 222 Lanzhou Gansu 73000 China
Abstract
AbstractModulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer‐based monoamine FeIII porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers. This polaron coupling at the interface of supramolecule and HTM can resonates with hole flux to increase hole transport efficiency. Mobility tests reveal that the hole mobility of doped HTM film is improved by 8‐fold. Doped perovskite device exhibits an increased efficiency from 19.8 % to 23.2 %, and greatly improved stability. This work provides a new strategy to improve the mobility of HTMs by surface carrier modulation, therefore fabricating efficient photovoltaic devices.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Science and Technology Program of Gansu Province
Subject
General Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献