Fabrication of Self‐Expanding Metal–Organic Cages Using a Ring‐Openable Ligand

Author:

Nishijima Ami1ORCID,Osugi Yuto1ORCID,Uemura Takashi1ORCID

Affiliation:

1. Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku 113-8656 Tokyo Japan

Abstract

AbstractMetal–organic cages (MOCs), which are formed via coordination‐driven assembly, are being extensively developed for various applications owing to the utility of their accessible molecular‐sized cavity. While MOC structures are uniquely and precisely predetermined by the metal coordination number and ligand configuration, tailoring MOCs to further modulate the size, shape, and chemical environment of the cavities has become intensively studied for a more efficient and adaptive molecular binding. Herein, we report self‐expanding MOCs that exhibit remarkable structural variations in cage size and flexibility while maintaining their topology. A cyclic ligand with an oligomeric chain tethering the two benzene rings of stilbene was designed and mixed with RhII ions to obtain the parent MOCs. These MOCs were successfully transformed into expanded MOCs via the selective cleavage of the double bond in stilbene. The expanded MOCs could effectively trap multidentate N‐donor molecules in their enlarged cavity, in contrast to the original MOCs with a narrow cavity. As the direct synthesis of expanded MOCs is impractical because of the entropically disfavored structures, self‐expansion using ring‐openable ligands is a promising approach that allows precision engineering and the production of functional MOCs that would otherwise be inaccessible.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Kumagai Foundation for Science and Technology

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3