Electrokinetic Analyses Uncover the Rate‐Determining Step of Biomass‐Derived Monosaccharide Electroreduction on Copper

Author:

Ma Guoquan1,Al‐Mahayni Hasan2,Jiang Na1,Song Dandan1,Qiao Bo1,Xu Zheng1,Seifitokaldani Ali2,Zhao Suling1,Liang Zhiqin13ORCID

Affiliation:

1. School of Physics Science and Engineering Beijing Jiaotong University Shangyuancun 3, Haidian District Beijing 100044 China

2. Department of Chemical Engineering McGill University Wong Building 3610 University Street, Montreal Quebec H3A 0C5 Canada

3. Tangshan Research Institute of Beijing Jiaotong University Xinhua Xi Street 46, Tangshan city Hebei 063000 China

Abstract

AbstractElectrochemical biomass conversion holds promise to upcycle carbon sources and produce valuable products while reducing greenhouse gas emissions. To this end, deep insight into the interfacial mechanism is essential for the rational design of an efficient electrocatalytic route, which is still an area of active research and development. Herein, we report the reduction of dihydroxyacetone (DHA)—the simplest monosaccharide derived from glycerol feedstock—to acetol, the vital chemical intermediate in industries, with faradaic efficiency of 85±5 % on a polycrystalline Cu electrode. DHA reduction follows preceding dehydration by coordination with the carbonyl and hydroxyl groups and the subsequent hydrogenation. The electrokinetic profile indicates that the rate‐determining step (RDS) includes a proton‐coupled electron transfer (PCET) to the dehydrated intermediate, revealed by coverage‐dependent Tafel slope and isotopic labeling experiments. An approximate zero‐order dependence of H+ suggests that water acts as the proton donor for the interfacial PCET process. Leveraging these insights, we formulate microkinetic models to illustrate its origin that Eley–Rideal (E−R) dominates over Langmuir–Hinshelwood (L−H) in governing Cu‐mediated DHA reduction, offering rational guidance that increasing the concentration of the adsorbed reactant alone would be sufficient to promote the activity in designing practical catalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3