Unveiling the CO Oxidation Mechanism over a Molecularly Defined Copper Single‐Atom Catalyst Supported on a Metal–Organic Framework

Author:

Abdel‐Mageed Ali M.12ORCID,Rungtaweevoranit Bunyarat34ORCID,Impeng Sarawoot4ORCID,Bansmann Joachim1ORCID,Rabeah Jabor2ORCID,Chen Shilong15ORCID,Häring Thomas1,Namuangrak Supawadee4ORCID,Faungnawakij Kajornsak4ORCID,Brückner Angelika2ORCID,Behm R. Jürgen16ORCID

Affiliation:

1. Inst. of Surface Chemistry and Catalysis Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany

2. Leibniz Institute for Catalysis (LIKAT Rostock) 18059 Rostock Germany

3. Dept. Chemistry and Kavli Energy NanoSciences Institute University of California Berkeley CA 94720 USA

4. National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand

5. Inst. Inorganic Chemistry Kiel University Max-Eyth-Straße 2 24118 Kiel Germany

6. Inst. of Theoretical Chemistry Ulm University Oberberghof 7 89081 Ulm Germany

Abstract

AbstractElucidating the reaction mechanism in heterogeneous catalysis is critically important for catalyst development, yet remains challenging because of the often unclear nature of the active sites. Using a molecularly defined copper single‐atom catalyst supported by a UiO‐66 metal–organic framework (Cu/UiO‐66) allows a detailed mechanistic elucidation of the CO oxidation reaction. Based on a combination of in situ/operando spectroscopies, kinetic measurements including kinetic isotope effects, and density‐functional‐theory‐based calculations, we identified the active site, reaction intermediates, and transition states of the dominant reaction cycle as well as the changes in oxidation/spin state during reaction. The reaction involves the continuous reactive dissociation of adsorbed O2, by reaction of O2,ad with COad, leading to the formation of an O atom connecting the Cu center with a neighboring Zr4+ ion as the rate limiting step. This is removed in a second activated step.

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3