Affiliation:
1. Key Laboratory of Textile Fiber and Products Ministry of Education Wuhan Textile University Wuhan 430200 China
2. College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 P. R. China
Abstract
AbstractThe diversification of chirality in covalent organic frameworks (COFs) holds immense promise for expanding their properties and functionality. Herein, we introduce an innovative approach for imparting helical chirality to COFs and fabricating a family of chiral COF nanotubes with mesoscopic helicity from entirely achiral building blocks for the first time. We present an effective 2,3‐diaminopyridine‐mediated supramolecular templating method, which facilitates the prefabrication of helical imine‐linked polymer nanotubes using unprecedented achiral symmetric monomers. Through meticulous optimization of crystallization conditions, these helical polymer nanotubes are adeptly converted into imine‐linked COF nanotubes boasting impressive surface areas, while well preserving their helical morphology and chiroptical properties. Furthermore, these helical imine‐linked polymers or COFs could be subtly transformed into corresponding more stable and functional helical β‐ketoenamine‐linked and hydrazone‐linked COF nanotubes with transferred circular dichroism via monomer exchange. Notably, despite the involvement of covalent bonding breakage and reorganization, these exchange processes overcome thermodynamic disadvantages, allowing mesoscopic helical chirality to be perfectly preserved. This research highlights the potential of mesoscopic helicity in conferring COFs with favourable chiral properties, providing novel insights into the development of multifunctional COFs in the field of chiral materials chemistry.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Chemistry,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献